Ultrasonic Flaw Signal Classification using Wavelet Transform and Support Vector Machine

نویسنده

  • Yu Wang
چکیده

This paper presents a ultrasonic flaw signal classification system by using wavelet transform and support vector machine (SVM). A digital flaw detector is first used to acquire the signals of defective carbon fiber reinforced polymer (CFRP) specimen with void, delamination and debonding. After that, the time domain based ultrasonic signals can be processed by discrete wavelet transform (DWT), and informative features are extracted from DWT coefficients representation of signals. Finally, feature vectors selected by PCA method are taken as input to train the SVM classifier. Furthermore, the selection of SVM parameters and kernel function has been examined in details. Experimental results validate that the model coupled with wavelet transform and SVM is a promising tool to deal with classification for ultrasonic flaw signals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM

This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...

متن کامل

Heart Rate Variability Classification using Support Vector Machine and Genetic Algorithm

Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transfo...

متن کامل

Classification of Ultrasonic Signals

In ultrasonic defectoscopy it is very difficult to detect flaw in materials with coarse-grain structure. The ultrasonic signals measured on these materials contain echoes which are very similar to fault echo. These echoes arise from grains which are contained in material. For detection of flaw various methods for suppressing of echoes from grains have to be used. In this work we used the method...

متن کامل

Ultrasonic Sensor Data Processing using Support Vector Machines

Ultrasonic sensors are ideal for non-destructive testing due to its many advantages over conventional sensors. Oil and gas pipelines are an area which uses ultrasonic sensors for monitoring and detecting the presence corrosion and defects. The proposed techniques ultimately aims at providing a continuous monitoring system using an array of ultrasonic sensors strategically positioned on the surf...

متن کامل

A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013